REFERENCES

1. Gazzin S, Masutti F, Vitek L, Tiribelli C. The molecular basis of jaundice: an old symptom revisited. Liver Int 2017;37:1094-102.

2. Gazzin S, Vitek L, Watchko J, Shapiro SM, Tiribelli C. A novel perspective on the biology of bilirubin in health and disease. Trends Mol Med 2016;22:758-68.

3. Wagner KH, Wallner M, Mölzer C, Gazzin S, Bulmer AC, et al. Looking to the horizon: the role of bilirubin in the development and prevention of age-related chronic diseases. Clin Sci (Lond) 2015;129:1-25.

4. Baranano DE, Rao M, Ferris CD, Snyder SH. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci U S A 2002;99:16093-8.

5. Sedlak TW, Snyder SH. Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 2004;113:1776-82.

6. Sedlak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, et al. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc Natl Acad Sci U S A 2009;106:5171-6.

7. Takeda TA, Mu A, Tai TT, Kitajima S, Taketani S. Continuous de novo biosynthesis of haem and its rapid turnover to bilirubin are necessary for cytoprotection against cell damage. Sci Rep 2015;5:10488.

8. Yuan X, Rietzschel N, Kwon H, Walter Nuno AB, Hanna DA, et al. Regulation of intracellular heme trafficking revealed by subcellular reporters. Proc Natl Acad Sci U S A 2016;113:E5144-52.

9. Chitnis T, Weiner HL. CNS inflammation and neurodegeneration. J Clin Invest 2017;127:3577-87.

10. Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology 2018;154:204-19.

11. Yankner BA, Lu T, Loerch P. The aging brain. Annu Rev Pathol 2008;3:41-66.

12. Rawji KS, Mishra MK, Michaels NJ, Rivest S, Stys PK, et al. Immunosenescence of microglia and macrophages: impact on the ageing central nervous system. Brain 2016;139:653-61.

13. Chinta SJ, Woods G, Rane A, Demaria M, Campisi J, et al. Cellular senescence and the aging brain. Exp Gerontol 2015;68:3-7.

14. Flanary BE, Sammons NW, Nguyen C, Walker D, Streit WJ. Evidence that aging and amyloid promote microglial cell senescence. Rejuvenation Res 2007;10:61-74.

15. Xu L, He D, Bai Y. Microglia-Mediated Inflammation and Neurodegenerative Disease. Mol Neurobiol 2016;53:6709-15.

16. Streit WJ. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002;40:133-9.

17. Zhang W, Wang T, Pei Z, Miller DS, Wu X, et al. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 2005;19:533-42.

18. Bsibsi M, Peferoen LA, Holtman IR, Nacken PJ, Gerritsen WH, et al. Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol 2014;128:215-29.

19. Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev 2015;2015:610813.

20. Brown R, Benveniste H, Black SE, Charpak S, Dichgans M, et al. Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc Res 2018;114:1462-73.

21. Choi YK, Kim KW. Blood-neural barrier: its diversity and coordinated cell-to-cell communication. BMB Rep 2008;41:345-52.

22. Lee H, Choi YK. Regenerative effects of heme oxygenase metabolites on neuroinflammatory diseases. Int J Mol Sci 2018;20:78.

23. Dong J, Jimi E, Zeiss C, Hayden MS, Ghosh S. Constitutively active NF-kappaB triggers systemic TNFalpha-dependent inflammation and localized TNFalpha-independent inflammatory disease. Genes Dev 2010;24:1709-17.

24. Miyaoka T, Seno H, Itoga M, Iijima M, Inagaki T, et al. Schizophrenia-associated idiopathic unconjugated hyperbilirubinemia (Gilbert’s syndrome). J Clin Psychiatry 2000;61:868-71.

25. Gama Marques J, Pedro I, Ouakinin S. Unconjugated bilirubin and acute psychosis: a five years retrospective observational and controlled study in patients with schizophrenia, schizoaffective and bipolar disorders. Int J Psychiatry Clin Pract 2019;23:281-5.

26. Radhakrishnan R, Kanigere M, Menon J, Calvin S, Janish A, et al. Association between unconjugated bilirubin and schizophrenia. Psychiatry Res 2011;189:480-2.

27. Pradeep JR, Acharya MS, Radhakrishnan R, Srinivasan K. Elevated unconjugated bilirubin in schizophrenia compared to bipolar affective disorder. Prim Care Companion CNS Disord 2019;21:19m02448.

28. Pommerening Dornelles E, Gama Marques J, Ouakinin S. Unconjugated bilirubin and schizophrenia: a systematic review. CNS Spectr 2019;24:577-88.

29. Gama Marques J, Ouakinin S. Clinical profile in schizophrenia and schizoaffective spectrum: relation with unconjugated bilirubin in a prospective and controlled study with psychopathological and psychosocial variables. CNS Spectr 2019:1-8.

30. Miyaoka T, Seno H, Itoga M, Inagaki T, Horiguchi J. Structural brain changes in schizophrenia associated with idiopathic unconjugated hyperbilirubinemia (Gilbert’s syndrome): a planimetric CT study. Schizophr Res 2001;52:291-3.

31. Miyaoka T, Yasukawa R, Mizuno S, Sukegawa T, Inagaki T, et al. Proton magnetic resonance spectroscopy (1H-MRS) of hippocampus, basal ganglia, and vermis of cerebellum in schizophrenia associated with idiopathic unconjugated hyperbilirubinemia (Gilbert’s syndrome). J Psychiatr Res 2005;39:29-34.

32. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2011;70:663-71.

33. Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, et al. Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol 2006;112:305-16.

34. Le Pichon JB, Riordan SM, Watchko J, Shapiro SM. The neurological sequelae of neonatal hyperbilirubinemia: definitions, diagnosis and treatment of the kernicterus spectrum disorders (KSDs). Curr Pediatr Rev 2017;13:199-209.

35. Dalman C, Cullberg J. Neonatal hyperbilirubinaemia--a vulnerability factor for mental disorder? Acta Psychiatr Scand 1999;100:469-71.

36. Chowdhury JR, Kondapalli R, Chowdhury NR. Gunn rat: a model for inherited deficiency of bilirubin glucuronidation. Adv Vet Sci Comp Med 1993;37:149-73.

37. Gazzin S, Zelenka J, Zdrahalova L, Konickova R, Zabetta CC, et al. Bilirubin accumulation and Cyp mRNA expression in selected brain regions of jaundiced Gunn rat pups. Pediatr Res 2012;71:653-60.

38. Liaury K, Miyaoka T, Tsumori T, Furuya M, Wake R, et al. Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: a possible schizophrenia animal model. J Neuroinflammation 2012;9:56.

39. Hayashida M, Miyaoka T, Tsuchie K, Yasuda H, Wake R, et al. Hyperbilirubinemia-related behavioral and neuropathological changes in rats: a possible schizophrenia animal model. Prog Neuropsychopharmacol Biol Psychiatry 2009;33:581-8.

40. Pae CU, Paik IH, Lee C, Lee SJ, Kim JJ, et al. Decreased plasma antioxidants in schizophrenia. Neuropsychobiology 2004;50:54-6.

41. Yin XL, Jia QF, Zhang GY, Zhang JP, Shirao T, et al. Association between decreased serum TBIL concentration and immediate memory impairment in schizophrenia patients. Sci Rep 2019;9:1622.

42. Vítek L, Novotná M, Lenícek M, Novotný L, Eberová J, et al. Serum bilirubin levels and UGT1A1 promoter variations in patients with schizophrenia. Psychiatry Res 2010;178:449-50.

43. Duan J, Göring HHH, Sanders AR, Moy W, Freda J, et al; MGS. Transcriptomic signatures of schizophrenia revealed by dopamine perturbation in an ex vivo model. Transl Psychiatry 2018;8:158.

44. Song W, Zukor H, Lin SH, Hascalovici J, Liberman A, et al. Schizophrenia-like features in transgenic mice overexpressing human HO-1 in the astrocytic compartment. J Neurosci 2012;32:10841-53.

45. Macías-García D, Méndez-Del Barrio C, Jesús S, Labrador MA, Adarmes-Gómez A, et al. Increased bilirubin levels in Parkinson’s disease. Parkinsonism Relat Disord 2019;63:213-6.

46. Moccia M, Picillo M, Erro R, Longo K, Amboni M, et al. Increased bilirubin levels in de novo Parkinson’s disease. Eur J Neurol 2015;22:954-9.

47. Qin XL, Zhang QS, Sun L, Hao MW, Hu ZT. Lower serum bilirubin and uric acid concentrations in patients with Parkinson’s Disease in China. Cell Biochem Biophys 2015;72:49-56.

48. Scigliano G, Girotti F, Soliveri P, Musicco M, Radice D, et al. Increased plasma bilirubin in Parkinson patients on L-dopa: evidence against the free radical hypothesis? Ital J Neurol Sci 1997;18:69-72.

49. Schipper HM, Song W, Zukor H, Hascalovici JR, Zeligman D. Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement. J Neurochem 2009;110:469-85.

50. Cuadrado A, Rojo AI. Heme oxygenase-1 as a therapeutic target in neurodegenerative diseases and brain infections. Curr Pharm Des 2008;14:429-42.

51. Hung SY, Liou HC, Kang KH, Wu RM, Wen CC, et al. Overexpression of heme oxygenase-1 protects dopaminergic neurons against 1-methyl-4-phenylpyridinium-induced neurotoxicity. Mol Pharmacol 2008;74:1564-75.

52. Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003;9:589-95.

53. Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ, et al. Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat Med 2005;11:703-4.

54. Patel NK, Bunnage M, Plaha P, Svendsen CN, Heywood P, et al. Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol 2005;57:298-302.

55. Dal Ben M, Bongiovanni R, Tuniz S, Fioriti E, Tiribelli C, et al. Earliest mechanisms of dopaminergic neurons sufferance in a novel slow progressing ex vivo model of parkinson disease in rat organotypic cultures of substantia nigra. Int J Mol Sci 2019;20:2224.

56. Song W, Kothari V, Velly AM, Cressatti M, Liberman A, et al. Evaluation of salivary heme oxygenase-1 as a potential biomarker of early Parkinson’s disease. Mov Disord 2018;33:583-91.

57. Ortiz GG, Pacheco-Moisés FP, Bitzer-Quintero OK, Ramírez-Anguiano AC, Flores-Alvarado LJ, et al. Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin Dev Immunol 2013;2013:708659.

58. Gonsette RE. Oxidative stress and excitotoxicity: a therapeutic issue in multiple sclerosis? Mult Scler 2008;14:22-34.

59. Ljubisavljevic S, Stojanovic I, Vojinovic S, Milojkovic M, Dunjic O, et al. Association of serum bilirubin and uric acid levels changes during neuroinflammation in patients with initial and relapsed demyelination attacks. Metab Brain Dis 2013;28:629-38.

60. Halliwell B, Zhao K, Whiteman M. Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies. Free Radic Res 1999;31:651-69.

61. van Horssen J, Schreibelt G, Drexhage J, Hazes T, Dijkstra CD, et al. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic Biol Med 2008;45:1729-37.

62. Artemiadis AK, Anagnostouli MC. Apoptosis of oligodendrocytes and post-translational modifications of myelin basic protein in multiple sclerosis: possible role for the early stages of multiple sclerosis. Eur Neurol 2010;63:65-72.

63. Kostic MS, Rajkovic JS, Floranovic MSP, Dimov ID, Pavlovic DD. Multiple sclerosis and oxidative stress - a clinical perspective. Neurochem J 2013;7:76-86.

64. Liu Y, Zhu B, Wang X, Luo L, Li P, et al. Bilirubin as a potent antioxidant suppresses experimental autoimmune encephalomyelitis: implications for the role of oxidative stress in the development of multiple sclerosis. J Neuroimmunol 2003;139:27-35.

65. Goodin DS. Chapter 21 - Glucocorticoid treatment of multiple sclerosis. In: Goodin DS, editor. Handbook of Clinical Neurology. Elsevier; 2014. pp. 455-64.

66. Liu Y, Li P, Lu J, Xiong W, Oger J, et al. Bilirubin possesses powerful immunomodulatory activity and suppresses experimental autoimmune encephalomyelitis. J Immunol 2008;181:1887-97.

67. Chora AA, Fontoura P, Cunha A, Pais TF, Cardoso S, et al. Heme oxygenase-1 and carbon monoxide suppress autoimmune neuroinflammation. J Clin Invest 2007;117:438-47.

68. Vitek L, Bellarosa C, Tiribelli C. Induction of mild hyperbilirubinemia: hype or real therapeutic opportunity? Clin Pharmacol Ther 2019;106:568-75.

69. Muchova L, Wong RJ, Hsu M, Morioka I, Vitek L, et al. Statin treatment increases formation of carbon monoxide and bilirubin in mice: a novel mechanism of in vivo antioxidant protection. Can J Physiol Pharmacol 2007;85:800-10.

70. Nguyen NT, Hanieh H, Nakahama T, Kishimoto T. The roles of aryl hydrocarbon receptor in immune responses. Int Immunol 2013;25:335-43.

71. Vítek L. Bilirubin as a signaling molecule. Med Res Rev 2020. Epub ahead of print [PMID: 32017160 DOI: 10.1002/med.21660]

72. Nakahama T, Hanieh H, Nguyen NT, Chinen I, Ripley B, et al. Aryl hydrocarbon receptor-mediated induction of the microRNA-132/212 cluster promotes interleukin-17-producing T-helper cell differentiation. Proc Natl Acad Sci U S A 2013;110:11964-9.

73. Kimura A, Naka T, Nohara K, Fujii-Kuriyama Y, Kishimoto T. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc Natl Acad Sci U S A 2008;105:9721-6.

74. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 2008;453:65-71.

75. Sekine H, Mimura J, Oshima M, Okawa H, Kanno J, et al. Hypersensitivity of aryl hydrocarbon receptor-deficient mice to lipopolysaccharide-induced septic shock. Mol Cell Biol 2009;29:6391-400.

76. Kimura A, Naka T, Nakahama T, Chinen I, Masuda K, et al. Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced inflammatory responses. J Exp Med 2009;206:2027-35.

77. Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci U S A 2010;107:19961-6.

78. Lee SS, Gao W, Mazzola S, Thomas MN, Csizmadia E, et al. Heme oxygenase-1, carbon monoxide, and bilirubin induce tolerance in recipients toward islet allografts by modulating T regulatory cells. FASEB J 2007;21:3450-7.

79. Deng J, Liang XM, Zhang XL, Ling SQ, Yang TT, et al. Relationship between serum bilirubin levels and optic neuritis. Chin Med J (Engl) 2013;126:3307-10.

80. Peng F, Yang Y, Liu J, Jiang Y, Zhu C, et al. Low antioxidant status of serum uric acid, bilirubin and albumin in patients with neuromyelitis optica. Eur J Neurol 2012;19:277-83.

81. Wang X, Jiao W, Lin M, Lu C, Liu C, et al. Resolution of inflammation in neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2019;27:34-41.

82. Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG. Revised diagnostic criteria for neuromyelitis optica. Neurology 2006;66:1485-9.

83. Tsoi VL, Hill KE, Carlson NG, Warner JE, Rose JW. Immunohistochemical evidence of inducible nitric oxide synthase and nitrotyrosine in a case of clinically isolated optic neuritis. J Neuroophthalmol 2006;26:87-94.

84. Cho HC. The Relationship among Homocysteine, Bilirubin, and Diabetic Retinopathy. Diabetes Metab J 2011;35:595-601.

85. Naruse K, Nakamura J, Hamada Y, Nakayama M, Chaya S, et al. Aldose reductase inhibition prevents glucose-induced apoptosis in cultured bovine retinal microvascular pericytes. Exp Eye Res 2000;71:309-15.

86. Beltramo E, Porta M. Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem 2013;20:3218-25.

87. Peng F, Deng X, Yu Y, Chen X, Shen L, et al. Serum bilirubin concentrations and multiple sclerosis. J Clin Neurosci 2011;18:1355-9.

88. Li RY, Cao ZG, Zhang JR, Li Y, Wang RT. Decreased serum bilirubin is associated with silent cerebral infarction. Arterioscler Thromb Vasc Biol 2014;34:946-51.

89. Higuchi S, Kabeya Y, Uchida J, Kato K, Tsukada N. Low bilirubin levels indicate a high risk of cerebral deep white matter lesions in apparently healthy subjects. Sci Rep 2018;8:6473.

90. Garde E, Mortensen EL, Krabbe K, Rostrup E, Larsson HB. Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study. Lancet 2000;356:628-34.

91. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 2010;341:c3666.

92. Suwanwela NC, Chutinetr A. Risk factors for atherosclerosis of cervicocerebral arteries: intracranial versus extracranial. Neuroepidemiology 2003;22:37-40.

93. Wong KS, Li H, Chan YL, Ahuja A, Lam WW, et al. Use of transcranial Doppler ultrasound to predict outcome in patients with intracranial large-artery occlusive disease. Stroke 2000;31:2641-7.

94. Zhong K, Wang X, Ma X, Ji X, Sang S, et al. Association between serum bilirubin and asymptomatic intracranial atherosclerosis: results from a population-based study. Neurol Sci 2020. Epub ahead of print. doi: 10.1007/s10072-020-04268-x

95. Jian Y, Zhao L, Wang H, Li T, Zhang L, et al. Bilirubin: a novel predictor of hemorrhagic transformation and symptomatic intracranial hemorrhage after mechanical thrombectomy. Neurol Sci 2019. Epub ahead of print. doi:10.1007/s10072-019-04182-x

96. Ishikawa K, Navab M, Leitinger N, Fogelman AM, Lusis AJ. Induction of heme oxygenase-1 inhibits the monocyte transmigration induced by mildly oxidized LDL. J Clin Invest 1997;100:1209-16.

97. Kawamura K, Ishikawa K, Wada Y, Kimura S, Matsumoto H, et al. Bilirubin from heme oxygenase-1 attenuates vascular endothelial activation and dysfunction. Arterioscler Thromb Vasc Biol 2005;25:155-60.

98. Ollinger R, Bilban M, Erat A, Froio A, McDaid J, et al. Bilirubin: a natural inhibitor of vascular smooth muscle cell proliferation. Circulation 2005;112:1030-9.

99. Pae HO, Oh GS, Lee BS, Rim JS, Kim YM, et al. 3-Hydroxyanthranilic acid, one of L-tryptophan metabolites, inhibits monocyte chemoattractant protein-1 secretion and vascular cell adhesion molecule-1 expression via heme oxygenase-1 induction in human umbilical vein endothelial cells. Atherosclerosis 2006;187:274-84.

100. Basiglio CL, Arriaga SM, Pelusa HF, Almará AM, Roma MG, et al. Protective role of unconjugated bilirubin on complement-mediated hepatocytolysis. Biochim Biophys Acta 2007;1770:1003-10.

101. Vĕtvicka V, Miler I, Síma P, Táborský L, Fornůsek L. The effect of bilirubin on the Fc receptor expression and phagocytic activity of mouse peritoneal macrophages. Folia Microbiol (Praha) 1985;30:373-80.

102. Dohi K, Satoh K, Ohtaki H, Shioda S, Miyake Y, et al. Elevated plasma levels of bilirubin in patients with neurotrauma reflect its pathophysiological role in free radical scavenging. In Vivo 2005;19:855-60.

103. Wang J, Doré S. Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain 2007;130:1643-52.

104. Orozco-Ibarra M, Estrada-Sánchez AM, Massieu L, Pedraza-Chaverrí J. Heme oxygenase-1 induction prevents neuronal damage triggered during mitochondrial inhibition: role of CO and bilirubin. Int J Biochem Cell Biol 2009;41:1304-14.

105. Zhao Q, Qu R, Teng L, Yin C, Yuan Y. HO-1 protects the nerves of rats with cerebral hemorrhage by regulating the PI3K/AKT signaling pathway. Neuropsychiatr Dis Treat 2019;15:1459-68.

106. Feng J, Zhang P, Chen X, He G. PI3K and ERK/Nrf2 pathways are involved in oleanolic acid-induced heme oxygenase-1 expression in rat vascular smooth muscle cells. J Cell Biochem 2011;112:1524-31.

107. Li Q, Huai L, Zhang C, Wang C, Jia Y, et al. Icaritin induces AML cell apoptosis via the MAPK/ERK and PI3K/AKT signal pathways. Int J Hematol 2013;97:617-23.

108. Doré S, Goto S, Sampei K, Blackshaw S, Hester LD, et al. Heme oxygenase-2 acts to prevent neuronal death in brain cultures and following transient cerebral ischemia. Neuroscience 2000;99:587-92.

109. Wang J, Zhuang H, Doré S. Heme oxygenase 2 is neuroprotective against intracerebral hemorrhage. Neurobiol Dis 2006;22:473-6.

110. Chang EF, Wong RJ, Vreman HJ, Igarashi T, Galo E, et al. Heme oxygenase-2 protects against lipid peroxidation-mediated cell loss and impaired motor recovery after traumatic brain injury. J Neurosci 2003;23:3689-96.

111. Zou ZY, Liu J, Chang C, Li JJ, Luo J, et al. Biliverdin administration regulates the microRNA-mRNA expressional network associated with neuroprotection in cerebral ischemia reperfusion injury in rats. Int J Mol Med 2019;43:1356-72.

112. Wegiel B, Gallo D, Csizmadia E, Roger T, Kaczmarek E, et al. Biliverdin inhibits Toll-like receptor-4 (TLR4) expression through nitric oxide-dependent nuclear translocation of biliverdin reductase. Proc Natl Acad Sci U S A 2011;108:18849-54.

113. Holst B, Raby AC, Hall JE, Labéta MO. Complement takes its Toll: an inflammatory crosstalk between Toll-like receptors and the receptors for the complement anaphylatoxin C5a. Anaesthesia 2012;67:60-4.

114. Pulliam JV, Xu Z, Ford GD, Liu C, Li Y, et al. Computational identification of conserved transcription factor binding sites upstream of genes induced in rat brain by transient focal ischemic stroke. Brain Res 2013;1495:76-85.

115. Iłzecka J, Stelmasiak Z. Serum bilirubin concentration in patients with amyotrophic lateral sclerosis. Clin Neurol Neurosurg 2003;105:237-40.

116. Oren DA, Desan PH, Boutros N, Anand A, Charney DS. Effects of light on low nocturnal bilirubin in winter depression: a preliminary report. Biol Psychiatry 2002;51:422-5.

117. Raszewski G, Gustaw K, Chwedorowicz R. Endogenous antioxidant status in dementia patients with cognitive impairment and normal cognitive function. Clin Endocrinol 2011;1:13-23.

118. Baierle M, Nascimento SN, Moro AM, Brucker N, Freitas F, et al. Relationship between inflammation and oxidative stress and cognitive decline in the institutionalized elderly. Oxid Med Cell Longev 2015;2015:804198.

119. Kim TS, Pae CU, Yoon SJ, Jang WY, Lee NJ, et al. Decreased plasma antioxidants in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 2006;21:344-8.

120. Di Domenico F, Barone E, Mancuso C, Perluigi M, Cocciolo A, et al. HO-1/BVR-a system analysis in plasma from probable Alzheimer’s disease and mild cognitive impairment subjects: a potential biochemical marker for the prediction of the disease. J Alzheimers Dis 2012;32:277-89.

121. Ishizuka K, Kimura T, Yoshitake J, Akaike T, Shono M, et al. Possible assessment for antioxidant capacity in Alzheimer’s disease by measuring lymphocyte heme oxygenase-1 expression with real-time RT-PCR. Ann N Y Acad Sci 2002;977:173-8.

122. Barone E, Di Domenico F, Sultana R, Coccia R, Mancuso C, et al. Heme oxygenase-1 posttranslational modifications in the brain of subjects with Alzheimer disease and mild cognitive impairment. Free Radic Biol Med 2012;52:2292-301.

123. Barone E, Di Domenico F, Mancuso C, Butterfield DA. The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: it’s time for reconciliation. Neurobiol Dis 2014;62:144-59.

124. Liu B, Moloney A, Meehan S, Morris K, Thomas SE, et al. Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation. J Biol Chem 2011;286:4248-56.

125. Schipper HM. Heme oxygenase expression in human central nervous system disorders. Free Radic Biol Med 2004;37:1995-2011.

126. Schipper HM. Heme oxygenase-1: transducer of pathological brain iron sequestration under oxidative stress. Ann N Y Acad Sci 2004;1012:84-93.

127. Buonocore G, Perrone S, Bracci R. Free radicals and brain damage in the newborn. Biol Neonate 2001;79:180-6.

128. Matyas M, Zaharie G. Antioxidants at newborns. Antioxidants 2019. Available from: https:/doi.org/10.5772/intechopen.85175 [Last accessed on 27 Mar 2020].

129. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408:239-47.

130. Gemma C, Vila J, Bachstetter A, Bickford PC. Oxidative stress and the aging brain: from theory to prevention. In: Riddle DR, editor. Brain aging: models, methods, and mechanisms. FL: CRC Press/Taylor & Francis; 2007.

131. Nitti M, Piras S, Marinari UM, Moretta L, Pronzato MA, et al. HO-1 induction in cancer progression: a matter of cell adaptation. Antioxidants (Basel) 2017;6:29.

132. Attucks OC, Jasmer KJ, Hannink M, Kassis J, Zhong Z, et al. Induction of heme oxygenase I (HMOX1) by HPP-4382: a novel modulator of Bach1 activity. PLoS One 2014;9:e101044.

133. Campbell NK, Fitzgerald HK, Malara A, Hambly R, Sweeney CM, et al. Naturally derived Heme-Oxygenase 1 inducers attenuate inflammatory responses in human dendritic cells and T cells: relevance for psoriasis treatment. Sci Rep 2018;8:10287.

134. Croft KD, Zhang D, Jiang R, Ayer A, Shengule S, et al. Structural requirements of flavonoids to induce heme oxygenase-1 expression. Free Radic Biol Med 2017;113:165-75.

135. George EM, Stout JM, Stec DE, Granger JP. Heme oxygenase induction attenuates TNF-α-induced hypertension in pregnant rodents. Front Pharmacol 2015;6:165.

136. Gerbitz A, Ewing P, Wilke A, Schubert T, Eissner G, et al. Induction of heme oxygenase-1 before conditioning results in improved survival and reduced graft-versus-host disease after experimental allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 2004;10:461-72.

137. Hamamura RS, Ohyashiki JH, Kurashina R, Kobayashi C, Zhang Y, et al. Induction of heme oxygenase-1 by cobalt protoporphyrin enhances the antitumour effect of bortezomib in adult T-cell leukaemia cells. Br J Cancer 2007;97:1099-105.

138. Kirby RJ, Divlianska DB, Whig K, Bryan N, Morfa CJ, et al. Discovery of novel small-molecule inducers of heme oxygenase-1 that protect human iPSC-derived cardiomyocytes from oxidative stress. J Pharmacol Exp Ther 2018;364:87-96.

139. Maamoun H, Zachariah M, McVey JH, Green FR, Agouni A. Heme oxygenase (HO)-1 induction prevents Endoplasmic Reticulum stress-mediated endothelial cell death and impaired angiogenic capacity. Biochem Pharmacol 2017;127:46-59.

140. Mikkelsen RB, Rabender CS, Graves P, Anscher MS. Induction of HO-1 and CO synthesis radiosensitizes tumor epithelial cells with CO acting as a NO mimetic. Int J Radiat Oncol Biol Phys 2014;90:S105.

141. Muchova L, Vanova K, Suk J, Micuda S, Dolezelova E, et al. Protective effect of heme oxygenase induction in ethinylestradiol-induced cholestasis. J Cell Mol Med 2015;19:924-33.

142. Pittala V, Vanella L, Salerno L, Di Giacomo C, Acquaviva R, et al. Novel caffeic acid phenethyl ester (Cape) analogues as inducers of heme oxygenase-1. Curr Pharm Des 2017;23:2657-64.

143. Ramma W, Ahmed A. Therapeutic potential of statins and the induction of heme oxygenase-1 in preeclampsia. J Reprod Immunol 2014;101-2:153-60.

144. Schipper HM. Is glial heme oxygenase-1 suppression in neurodegenerative disorders permissive for neural repair? Neural Regen Res 2015;10:208-10.

145. Simon T, Pogu J, Rémy S, Brau F, Pogu S, et al. Inhibition of effector antigen-specific T cells by intradermal administration of heme oxygenase-1 inducers. J Autoimmun 2017;81:44-55.

146. Skrzypek K, Tertil M, Golda S, Ciesla M, Weglarczyk K, et al. Interplay between heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization, and metastasis. Antioxid Redox Signal 2013;19:644-60.

147. Strasky Z, Zemankova L, Nemeckova I, Rathouska J, Wong RJ, et al. Spirulina platensis and phycocyanobilin activate atheroprotective heme oxygenase-1: a possible implication for atherogenesis. Food Funct 2013;4:1586-94.

148. Won AN, Kim SA, Ahn JY, Han JH, Kim CH, et al. HO-1 Induction by Selaginella tamariscina Extract Inhibits Inflammatory Response in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Evid Based Complement Alternat Med 2018;2018:7816923.

Neuroimmunology and Neuroinflammation
ISSN 2349-6142 (Online) 2347-8659 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/